Through sides
Through sides
The basic formula for finding a bisector in any arbitrary triangle, knowing all three sides, is based on Stuart's theorem, and consists in extracting the square root from the product of adjacent sides by the sum of all three sides and the sum of adjacent sides minus the third, and then dividing the root of this expression by the amount adjacent to the bisector of the parties.
- Area
- Volume
- Perimeter
- Side
- Height
- Diagonal
- Radius
- Median
- Bisector
- Angle
- Theorems
- Triangle area
- Square Area
- Rectangle Area
- Circle Area
- Rhombus Area
- Parallelogram Area
- Trapezoid Area Calculator
- Ellipse Area
- Annulus Area
- Quadrilateral Area
- Annulus Sector Area
- Circle Sector Area
- Circle Segment Area
- Sphere area
- Cube Area
- Cylinder area
- Pyramid area
- Parallelepiped area
- Cone area
- Truncated cone area
- Tetrahedron area
- Regular polygon area
- Sphere volume
- Cube volume
- Cylinder volume
- Pyramid volume
- Parallelepiped volume
- Cone volume
- Truncated cone volume
- Tetrahedron volume
- Prism volume
- Octahedron volume
- Truncated pyramid volume
- Ellipsoid volume
- Capsule volume
- Hemisphere volume
- Spherical segment volume
- Triangle perimeter
- Square perimeter
- Rectangle perimeter
- Circle perimeter
- Rhombus perimeter
- Parallelogram perimeter
- Trapezoid perimeter
- Ellipse perimeter
- Annulus perimeter
- Quadrilateral perimeter
- Circle sector perimeter
- Regular polygon perimeter
- Triangle side calculator
- Square side calculator
- Rectangle side calculator
- Rhombus side calculator
- Parallelogram side calculator
- Trapezoid side calculator
- Cube side calculator
- Parallelepiped side calculator
- Pyramid side calculator
- Tetrahedron side calculator
- Triangle height calculator
- Trapezoid height calculator
- Parallelogram/Rhombus height calculator
- Pyramid height calculator
- Prism height calculator
- Cylinder height calculator
- Cone height calculator